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CONJUGATE HEAT TRANSFER AND
THERMOSTRESSED STATE OF A PLATE WITH
RADIATION AND CONDUCTION HEATING

V. I. Zavelion UDC 536.24:539.3

The problem of combined analysis of the parameters of conjugate heat transfer and thermostressed state of
a plate with its radiation and conduction heating in an absorbing-medium layer is considered. The effect of
the optical characteristics of the medium on the parameters of conjugate heat transfer and the distribution

of thermal stresses in a plate is studied.

The present paper considers conjugate heat transfer in a system consisting of a plane layer of an absorbing
medium and a plate and the thermostressed state of the latter with unilateral heating of the plate by radiation and
conduction. The heating source is modeled by an extended plane parallel to the plate. On this plane at r > 0 some
limiting temperature T is maintained; the plane of the plate opposite the medium has some temperature T = const
(To < Ty) and rests upon an absolutely solid basc; the contact surface between medium and the plate is free. At
the initial time instant, the entire system has temperature Ty. This formulation of the problem is typical in the
analysis of temperatures and thermal stresses due to radiative heating of the structural clements of varions types
of industrial furnaces [1]. We assumc that the medium contacting the plate is gray and the surfaces of the emitter
and the plate are gray and diffusely radiating and reflecting {2 ]. With allowance for the adopted assumptions and
also assuming the thermophysical and thermomechanical propertics of the medium and plate to be constant, we
write the compound problem of conjugate heat transfer and thermoelasticity for a two-layer system (Fig. 1) in the

following form
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E,, Ej arce integro-cxponential functions {2 ];
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Fig. 1. Computational scheme.
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Fig. 2. Distribution of temperature ® (1), St number (2), and stress intensity
on heated surface of plate (3) with time at Bu = 0.1; curves 4-6, for Bu = 1.

The dimensionless variables in Eqs. (1)-(14) are expressed by the relations
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a

The subscript m in relations (15) indicates the plate characteristics; the characteristics of the absorbing-medium
layer have no subscripts.

To solve problem (1) we used an implicit finite-difference scheme, though the algorithm for calculating a
conjugate heat transfer problem has some spccific featurcs. Due to the nonlincar relation between the temperature
and radiation intensity of the medium Egs. (1) and (5 can be solved only by iterations. At the same time,
temperature ©; in condition (3) is not known a priori, sincc the problem is considered in a conjugate formulation.
A computational experiment showed that the traditional approach to the solution of these problems [1] under
certain conditions (when temperatures of the absorbing medium and conjugation surface become close) can lead to
physically contradictory results. The cause of these errors is the fact that the conjugation conditions (9) in
implementing the iteration scheme for the solutions |11 at cach step arc performed not simultancously but
successively.

In the present paper it is suggested that the conjugate hcat transfer problem be solved using a through
itcration scheme that satisfies the conditions of ideal thermal contact (9) at cach iteration. For cach time instant
it can be described by the following sequence: 1) the problem of radiation transfer (1)-(3) is solved for a given
temperature field |2, 3}; 2) initial coefficients of factorization arc prescribed by condition (7) and then, based on
a finite-difference approximation of Eq. (§), they are calculated for all the nodes in the layer; 3) the initial
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Fig. 3. Temperaturc distribution over the layer and plate thickness at Bu =
0.1: ) Fo, =0.02; 2) 0.2; 3) 0.6.

Fig. 4. Distribution of stress intensity (Bu=0.1) over plate thickness: 1) Fop,
=0.1; 2) 0.6; 3) 1.2.

coefficients of factorization for the plate [4 ], which are then found by the difference analog of Eq. (6), are calculated
based on conjugation conditions (9) and the obtained cocfficients of factorization for the medium; 4) reverse
factorization is performed using condition (8) and recursion formulas. The described scquence of steps is repeated
until the specified accuracy is achieved, then a transition to the next time layer takes place.

Assuming that plate heating occurs at a relatively low rate, we calculate the thermal stresses for each time
instant within the framework of a quasistatic problem of thermoeclasticity [5].

When considering the problem of plate heating in a conjugate formulation, the question arises as to what
calculation parameters will provide an integral estimate of the studied thermophysical process. To answer this
question we represent the second of conjugation conditions (9} as follows:
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where ® = [ ©dY is the temperature of the medium averaged over the layer thickness; St = o(T| — T0)3c3/,1m is
0

the Stark number; o is an unknown coefficient of radiation characterizing the intensity of plate heating in the
considered system. It is obvious that solution of the problem in a conjugate formulation makes it possible to obtain,
using relation (16), the St number by calculation. Multiple repetition of the problem solution allows one to derive
dimensionless relations, which arc presented in the form of tables:

St =/, (K;, K;;, Iw, Bu, Fop); (17

®=/,(K,, K;;, Iw, Bu, Fo_). (18)

Thesc relations allow caclulation of plate heating in a nonconjugate formulation, i.c., solution of heat-conduction
Eq. (6) with the boundary conditions (8) and (16). The latter, in this case, replaces conjugation conditions (9). It
is apparent that this approach is more convenient for study of the thermostressed state of the plate when it is
necessary to know only its temperature field.

Figures 2-4 give some results of calculations (Ky = 0.5; Ky = 0.01; Iw = 25; ) = ¢5 = 1). Figure 2 shows
the cffect of the optical thickness of the medium on the dynamics of its heating, intensity of heat transfer from the
medium to the plate, and the stress-strain state of the latter. As Bu decreases, the mean temperature of the medium
and also the St number are stabilized at higher levels. This is explained by the definition of the Bouger number
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itsclf. A decrease in Bu means a reduction of either the coefficient of absorption 8 or the geometrical thickness L
of the medium. It is obvious that both factors facilitate heating of both the medium and the plate. This, in turn,
affects the value of thermal stresses. An overview of the dynamics of heating of the studied system is given in Fig.
3. The rather rapid stabilization of the temperature profile in the medium is explained by the predominance of the
radiative component in the mechanism of heat transfer (Iw = 25). A gradual stabilization of the distributions of
thermal stresses over the plate thickness is also typical (Fig. 4). Here the maximum thermal stress (o;l,—)) is
determined by the tempcerature established on the conjugation surface when the process reaches the stcadyvstate.

The presented results indicate continuity of the temperature fields in the medium and plate. A reliable
analysis of thcrmal stresscs in the plate is impossible without considcration of the problem of heating in a conjugate
formulation. The given scheme for transition from a conjugate formulation of the problem of plate heating to the
solution of the proper heat conduction problem with given nonlinear boundary condition is a promising onc and
can be uscd in calculations of temperatures and thermal stresses in structures with other configurations.

NOTATIONS

uy, displacement; oy, stress; A, a, ayand B, coefficients of thermal conductivity, thermal diffusivity, linear
expansion, and absorption of medium; @, temperature; T, Tp, limiting temperature; /, intensity of radiation; oy,
Stefan-Boltzmann constant; 6, L, thickness of plate and layer; Iw, Bu, and Fo, similarity criteria (radiative-
conductive, Bouger, and Fourier); E, elastic modulus; ¢;, p; (i = 1, 2), emissivity factor and refractive capacities of
surfaces with coordinates Y =0 and Y = 1. Subscripts: m, metal; t, temperature.
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